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  Abstract            
   
Water, the universal solvent, is crucial for life, yet its preservation faces growing challenges from climate change and population growth. 

Understanding factors contributing to extreme events like droughts is vital for effective risk management. Drought inflicts substantial harm across 

social, economic, and agricultural domains, making an effective early warning and monitoring system essential, particularly given significant climatic 

variations and the anticipated increase in water scarcity and drought frequency. This study focuses on developing a resilient agricultural drought 

assessment system for Shandong province, China, using the three-month Standardized Precipitation Evapotranspiration Index (SPEI-3) as the 

reference variable. We used multi-source remote sensing and modeled data, including precipitation, soil moisture, vegetation indices (NDVI, EVI), and 

temperature, as input factors for three machine learning models: Bias-Corrected Random Forest (BRF), Extreme Gradient Boosting (XGBoost), and 

Support Vector Machines (SVM). 

The results show that the BRF model significantly outperforms both SVM and XGBoost in simulating SPEI-3 values, achieving a high prediction 

accuracy (R-squared of 0.94) and a small prediction error (RMSE of 0.22) on the test set. Model stability, assessed through multiple runs and a leave-

one-station-out cross-validation, further confirmed BRF's superior and more stable performance. An analysis of factor importance via the BRF model 

indicated that three-month cumulative precipitation is the most important factor in agricultural drought assessment, accounting for 55.17% of the 

relative importance, followed by soil moisture (10.2%). This research successfully validates the BRF model's high accuracy and stability for mapping 

the SPEI-3 index across space, offering a robust methodology for enhanced drought monitoring and response. 
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INTRODUCTION    

Drought is characterized by a temporary disruption in the balance of water resources caused by consistently lowerthan-average rainfall. Its adverse 

effects on agriculture, economy, recreation, hydropower generation, and ecosystems are substantial. Droughts have the potential to result in crop 

failure, giving rise to significant challenges in food security and economic losses. Additionally, they diminish water reservoirs like lakes and 

rivers, impacting water distribution and energy supply directly. Furthermore, droughts can elevate plant mortality rates, trigger ecosystem fires, 

and compromise the capacity of vegetation to absorb carbon. Consequently, these factors contribute to the disruption of land carbon storage and 

its potential for storage. To comprehend drought and facilitate its monitoring and prediction, it is imperative to conduct in-depth studies on 

precipitation, soil conditions, vegetation, and their interconnected parameters. Drought indices have been developed worldwide to assess the 

initiation, severity, and geographical extent of droughts across meteorological, hydrological, and agricultural domains. These indices encompass 

various parameters, including precipitation, runoff, soil water storage, satellite-derived vegetation metrics, and land surface temperature. To 

comprehend the process and consequences of drought, it is essential to recognize key aspects such as intensity, duration, and spatial extent. The 

primary challenge in monitoring and analyzing drought lies in selecting appropriate indicators. Drought indices predominantly rely on the 

calculation of either individual or combined variables affected by drought to represent diverse drought characteristics. Consequently, over 160 

drought indices have been developed by researchers, each possessing distinct advantages and limitations that warrant careful consideration. These 

indices fall into two categories: those based on meteorological observations and those based on remotely sensed observations. Meteorological 

drought indices, derived from ground-based measurements, utilize variables like precipitation and temperature, enabling precise monitoring of 

drought conditions in the vicinity of climate stations. Among them, the standard precipitation evapotranspiration index (SPEI) stands out as it 

incorporates both precipitation and temperature in its computation. Remote sensing provides continuous, comprehensive information on drought 
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conditions in both time and space, surpassing ground-based observations. Researchers use various sensors to calculate drought indices, including 

normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), for monitoring meteorological and agricultural drought. 

Advanced remote sensing products have spawned additional indices like soil moisture condition index (SMCI) and precipitation condition index 

(PCI) based on precipitation, temperature, evapotranspiration, and soil moisture. Despite capturing detailed spatial characteristics, remote sensing 

indices have limitations due to short observation times and challenges related to retrieval algorithms and atmospheric conditions.  

Researchers have experimented with various models to enhance drought monitoring. Initially, they relied on stochastic models like the 

autoregressive integrated moving average model (ARIMA) to forecast drought, which could capture seasonality and time series lags. However, 

drought's essence being nonlinear, subsequent studies explored three types of models: physical, data-driven, and hybrid. Data-driven models, 

particularly artificial neural networks (ANN), have gained prominence due to their ability to improve prediction accuracy over physically-based 

models. Despite ANN's effectiveness in short and long-term predictions, it struggles with non-stationarity in drought estimation due to time series 

lags. Consequently, interest has surged in employing machine learning approaches, especially as more advanced methods have emerged, 

demonstrating non-linearity, high accuracy, and generalization capacity. Machine learning, capitalizing on extensive remote sensing data, has 

become pivotal in drought monitoring. By merging multi-source remote sensing data through machine learning models, the ground-based drought 

index can be replicated, expanding its spatial reach and offering a methodology to evaluate drought's spatial distribution. The Random Forest 

(RF) algorithm is a notable bagging integrated learning method. RF estimates rely on the average outcome of each tree within the forest, which 

helps prevent erratic prediction outcomes. Nevertheless, due to its averaging nature, RF might introduce bias when handling extreme data points. 

By implementing bias correction, the Bias-Corrected Random Forest (BRF) outperforms conventional RF models in extreme value estimation. 

XGBoost, an ensemble learning technique rooted in boosting, enhances gradient-augmented trees and serves as an efficient implementation of 

the Gradient Boosting Decision Tree (GBDT). Unlike RF, boosting generates results through a weighted aggregation of all predictions and is 

highly sensitive to anomalies. Support Vector Machine (SVM) stands as the closest machine learning approach to deep learning. Nonlinear SVM 

equates to a two-layer neural network. Introducing multiple kernel functions to nonlinear SVM can simulate a multi-layer neural network. Due 

to its robust classification and regression capabilities, SVM finds extensive applications in remote sensing and image classification  

  

MATERIALS AND METHODS  
Study Areas: The study was conducted in Shandong province, northern China, spanning approximately 157,900 km2 with a water area of 2100 

km2.   

  
Figure 1: Study area: Shandong province's location and land cover types  

Shandong's topography includes mountains, hills, platforms, basins, plains, lakes, and other features. It experiences a temperate monsoon climate, 

with annual precipitation ranging from 554 to 1048 mm. Precipitation decreases from southeast to north. Drought, mainly in spring and winter 

due to insufficient precipitation, affects winter wheat and summer maize, the primary crops. The survey used the IGBP land type classification 

standard in MCD12Q1 data to categorize Shandong's land use into various types, including forest, shrublands, grasslands, croplands, wetlands, 

urban areas, snow and ice, barren areas, and water bodies.  

  

Data  

MODIS Data  

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a medium-resolution spectrometer situated on the Terra and Aqua satellites, 

playing a pivotal role in the U.S. Earth Observing System (EOS) program for monitoring global biological and physical phenomena. By capturing 

electromagnetic energy across a broad spectral range, MODIS delivers crucial insights into the Earth's ecological, meteorological, and 

hydrological dynamics. Throughout the research period spanning from 2002 to 2020, MODIS products, including the MCD12Q1 land cover type 

product, MOD13A3 vegetation index product, and MOD11A2 land surface temperature product, were acquired from NASA's official website 

(http://reverb.echo.nasa.gov, accessed on 12 February 2021).   

Table 1:  Remote Sensing Data used in this study  

 
 Data  Temporal Resolution  Spatial Resolution  Time Span  Source  

Precipition  1 month  0.1  2001-2020  GPM  
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NDVI  1 month  1 km  2002-2020  MODIS  

EVI  1 month  1 km  2002-2020  MODIS  

LST  8 day  1 km  2002-2020  MODIS  

Soil moisture  1 month  0.25  2002-2020  MODIS  

Evapotranspiration  1 month  0.25  2002-2020  MODIS  

Potential evapotranspiration  1 month  0.25  2002-2020  MODIS  

  

MCD12Q1 characterizes land cover types annually at a spatial resolution of 500 m, while MOD13A3 synthesizes monthly surface vegetation 

index data at a 1 km resolution. Both NDVI and EVI data were utilized. MOD11A2, with an 8-day temporal resolution and 1 km spatial resolution, 

provides surface temperature information, aggregated into monthly values using the mean synthesis method [61]. All datasets were resampled to 

a spatial resolution of 500 m.  

GPM Data  

The Global Precipitation Measurement Mission (GPM) is an international collaboration led by NASA and JAXA, succeeding the Tropical 

Precipitation Measuring Mission (TRMM). GPM uses a core satellite with advanced radar/radiometer for space-based precipitation 

measurements. The GPM IMERG dataset, available on NASA's website, offers one-month temporal resolution and 0.1° spatial resolution 

(https://search.earthdata.nasa.gov/, accessed on February 17, 2021). To assess delayed precipitation response in drought conditions, we computed 

means for onemonth and three-month scales, then resampled outcomes to a 500 m spatial resolution.  

GLDAS Data  

Data related to evapotranspiration, potential evapotranspiration, and soil moisture are derived from the GLDAS 2.1 (Global Land Data Assistance 

System Version 2.1) datasets. These datasets have monthly temporal resolution and a spatial resolution of 0.25° × 0.25°. GLDAS integrates 

satellite and ground measurements and employs advanced surface modeling and data assimilation techniques to estimate various surface states 

and fluxes continuously, including soil moisture, soil temperature, heat flux, and evaporation. The monthly soil moisture, potential 

evapotranspiration, and evapotranspiration data were originally obtained at a spatial resolution of 0.25° × 0.25° from the GLDAS-2.1 dataset and 

were later resampled to a spatial resolution of 500 m.   

Observation Data  

This research utilized meteorological data collected by the stations of the China Meteorological Data Network (http://data.cma.cn/, accessed on 

March 10, 2021). The data encompassed monthly precipitation, average temperature, and other metrics from Shandong meteorological stations 

spanning 2001 to 2020. The dataset included 23 meteorological stations, with their spatial arrangement depicted in Figure 1.  

  

A Method  

Modeling Methodology  

This study outlines the agricultural drought assessment procedures, depicted in Figure 2, utilizing remote sensing data and model simulation data. 

The remote sensing drought factors, derived from multi-sensor remote sensing data, are employed to estimate the Standardized Precipitation 

Evapotranspiration Index (SPEI) using bias-corrected random forest (BRF), extreme gradient boosting (XGBoost), and support vector machines 

(SVM). These methods are applied to analyze drought conditions in Shandong province. Maintaining the Integrity of the Specifications  

  
Figure 2: Workflow of this study  

To begin, the drought index SPEI, based on meteorological station data (precipitation and temperature) from Shandong province, serves as the 

dependent variable for our model input. Next, remote sensing data are transformed into 500 m spatial resolution images using processes like 

projection coordinate conversion, resampling, band operation, and clipping via MRT, ArcGIS, and Python, incorporating maximum/minimum 

values. Three adaptive machine learning approaches—XGBoost, BRF, and SVM—are then applied to estimate agricultural drought in Shandong 

province using remote sensing drought factors. The selection of the best model is determined based on performance and stability evaluations 
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within the province. The relative importance of each influencing factor, as per the best model, is compared with the Pearson correlation coefficient 

of each factor with SPEI. Subsequently, the optimal drought monitoring model is utilized to generate the spatial distribution map of drought in 

Shandong province, with the SPEI spatial distribution map obtained through the model being analyzed for the province's drought situation.  

Standardized Precipitation Evapotranspiration Index  

The SPEI, an extension of the SPI, combines precipitation and temperature for drought analysis [24]. Unlike SPI, SPEI considers temperature's 

impact on water needs. Shorter time scale SPEIs (e.g., SPEI-1) monitor meteorological drought, while longer ones are suitable for hydrological 

droughts. This study focuses on the three-month SPEI for monitoring agricultural and soil moisture dynamics.  

The calculation steps of SPEI-3 are as follows:  

1. Calculation of monthly potential evapotranspiration using Thornthwaite method:  

 𝑃𝐸𝑇=16𝐾(10𝑇/𝐼)m           (1)  

Equation (1), K represents the latitude-dependent correction factor, T denotes the monthly average temperature, I is the total heating index, and 

m stands for a constant  

 𝐼=∑12𝑖=1(𝑇/5)1.514           (2)  

 𝑚=6.75×10−7𝐼3−7.71×10−5𝐼2+1.792×10−2𝐼+0.49    (3)  

2. Calculate the difference between precipitation and potential evapotranspiration for each month  

 𝐷𝑖=𝑃𝑖−𝑃𝐸𝑇𝑖            (4)  

Equation (4) defines 𝑃𝑖 as the monthly precipitation, 𝑃𝐸𝑇𝑖 as the monthly potential evapotranspiration, and 'i' represents the month. The process 

of establishing the accumulation of climate water balance at various time scales follows.  

 𝐷𝑘𝑛=∑𝑘−1𝑖=0(𝑃𝑛−𝑖−𝑃𝐸𝑇𝑛−𝑖)         (5)  

In Equation (5), the variable k represents the time scale and is assigned the numerical value of 3, while n denotes the quantity of computations.  

3. To standardize 𝐷𝑖, Initially, a Log-logistic probability density function is employed to construct the dataset.  

 𝑓(𝑥)=𝛽/𝛼(𝑥−𝑦/𝛼)𝛽−1 [1+(𝑥−𝑦/𝜀)]−2         (6)  

In Equation (6), 𝛼 represents the scale parameter, and 𝛽 signifies the shape parameter. These parameters are derived through the linear moment 

method. Subsequently, the cumulative probability of the 𝐷𝑖 density function is expressed as:  

 𝐹(𝑥)=[1+(𝛼/𝑥−𝑦)𝛽]−1           (7)  

4. Under normal normalization of the cumulative probability density function, the probability of exceeding a certain 𝐷𝑖 value is 𝑃=1−𝐹(𝑋) 

and the probability of weighted moments are 𝜔 = √−2𝑙𝑛(𝑃). When P ≤ 0.5,  

 𝑆𝑃𝐸𝐼=𝜔−𝐶0+𝐶1𝜔+𝐶2𝜔2/1+𝑑1𝜔+𝑑2𝜔2+𝑑2𝜔3    (8)  

When P > 0.5,  

 𝑆𝑃𝐸𝐼=𝐶0+𝐶1𝜔+𝐶2𝜔2/1+𝑑1𝜔+𝑑2𝜔2+𝑑2𝜔3     (9)  

In Equations (8) and (9), 𝐶0=2.515517, 𝐶1=0.802853, 𝐶2=0.010328, 𝑑1=1.432788, 𝑑2=0.189269, and 𝑑3=0.001308  

The temperature and precipitation records from chosen weather stations were employed to compute the standard precipitation evapotranspiration 

index (SPEI) based on ground observations. In accordance with globally accepted standards for categorizing drought severity, the SPEI is 

segmented into five levels, as outlined in Table 2.  

Table 2:  SPEI-3 classification criteria for grading drought.  

 Grade  Drought Condition  SPEI  

 
I No Drought  -0.5,SPEI  

II Light Drought  -1.0<SPEI<-0.5  

III Moderate Drought  -1.5<SPEI<1.0  

IV Severe Drought  -2.0<SPEI<-15  

V Extreme Drought  SPEI -20  

 
Establishment of Drought Prediction Indicators  

This study calculated, the Soil Moisture Condition Index (SMCI) and Precipitation Condition Index (PCI) using soil moisture and precipitation 

data, respectively, both of which are closely associated with agricultural drought. PCI directly reflects deviations in precipitation, whereas SMCI 

provides a quantitative representation of soil moisture anomalies, indicating wet or dry conditions. The Temperature Condition Index (TCI) is 

derived from MODIS LST data and assesses the impact of high temperatures on vegetation growth; higher TCI values signify more severe drought 

conditions. Evapotranspiration indicates the level of plant transpiration, with lower values indicating greater drought severity. The calculation 

formulas are outlined in Table 3.  

Table 3: Normalization formula for calculating seven types of impact factors for each grid  

 Drought Index  Formula  

 
 PCI  (GPM1-GPMmin)/(GPMmax-GPMmin)  

 SMCI  (SM1-SMmin)/(SMmax-SMmin)  

 TCI  (LSTmax-LST1)/(LSTmax-LSTmin)  

 VCI  (NDVI1-NDVImin)/(NDVImax-NDVImin)  

 Scaled EVI  (EVI1-EVImin)/(EVImax-EVImin)  
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 Scaled ET  (ET1-Etmin)/(ETmax-ETmin)  

 Scaled PET  (PET1-EVImin)/(PETmax-PETmin)  

 
Note: i represents the month; max and min represent the maximum and minimum values of the corresponding grid of the impact factor from 2002 

to 2020.  

  

  

Bias-Corrected Random Forest  

Random Forest (RF) is an integrated learning algorithm that constructs multiple decision trees into a random forest by random sampling and 

integration methods. RF first generates a number of independent trees using the sample set generated by bootstrap. With a large enough training 

sample, about 37% of the training data will be retained and used for subsequent out-of-bag validation. For each tree in the forest, RF determines 

its outcome by constructing a random subset of the training set through the bootstrap method. The result of RF approaches is the means of each 

tree. Therefore, RF can decrease the variance and obtain more precise prediction results compared with common tree-based algorithms. However, 

when predicting extreme observations, it may lead to bias. When the observations are small, the predictions of RF tend to overestimate; while 

when the observations are large, the predictions of RF tend to underestimate. In this study, we applied bias correction methods to estimate and 

correct for RF bias in the regression. The details of this bias-correction approach is as follows:  

1) Firstly, build the RF model by training dataset Ytrain = RF (Xtrain), where Xtrain and Ytrain represent the independent and dependent 

variables, respectively.  

2) Calculate the estimated value and residual, rtrain = Ytrain − Ypredict, where rtrain represents the residual and Ypredict represents the 

estimated value.  

3) Taking the residuals obtained in step (2) to be the dependent variable and training dataset in step (1) to be the independent variable, fit 

the random forest model, rtrain = rfres (Xtrain, Ytrain). This step is used to estimate the residual of the test dataset.  

4) Calculate the estimated value Ytest from the RF model obtained in step (1) and the test dataset Xtest, Ytest = RF (Xtest)  

5) Calculate the estimated residual using the rfres model in step (3), the estimated value in step 4, and the independent variables in the test 

dataset, rtest = rfres (Xtest, Ytest)  

6) The estimated residual rtest is added to the estimated value Ytest for deviation correction, Ybias-correction = Ytest + rtest  

  

XGBoost  

XGBoost, short for extreme gradient boosting, effectively implements the gradient boosting decision tree (GBDT) algorithm and incorporates 

numerous enhancements in both algorithmic and engineering aspects. In contrast to the conventional GBDT approach, XGBoost employs a data 

adoption strategy reminiscent of a random forest. Furthermore, it introduces a regularization term to manage model complexity, enhancing overall 

model generalization and preventing overfitting. The specifics of the XGBoost approach are outlined as follows.  

1) To grow a tree, constantly add new trees and continuously split features. Each time a tree is added, a new function is learned f(x) to fit 

the residual of the last estimation. The optimal model is constructed by minimizing the loss function: 𝑜𝑏𝑗(𝑡)=∑𝑛 𝑖=1 𝑙(𝑦𝑖,𝑦𝑖̂ 
)+Ω(f(t))+𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡.  

2) XGBoost needs to estimate the result of a sample after it has been trained to obtain k trees. Actually, according to the characteristics of 

this sample, the sample will fall on one corresponding leaf node per tree, and each leaf node corresponds to a score.  

3) Finally, XGBoost will add up the results corresponding to each tree, and it will obtain the estimate of the sample, 𝑦(̂ 𝑘)𝑖=∑𝐾𝑘𝛾𝑘ℎ𝑘(𝑥𝑖), 
where K is the sum of trees, k represents the kth tree, 𝛾𝑘 is the weight of this tree, and ℎ𝑘 represents the estimation of this tree.  

Support Vector Machine  

Support vector machine (SVM) is one of the most widely used algorithms in machine learning. Derived from statistical learning theory, SVM 

algorithms are strong learners with classification and regression algorithms . The purpose of SVM is to determine one or more hyperplanes to 

divide the samples. The segmentation principle is to maximize the interval, which is finally transformed into a convex quadratic programming 

problem . SVM is the closest machine learning method to deep learning. Nonlinear SVM is equivalent to a two-layer neural network. If multiple 

kernel functions are added to nonlinear SVM, a multi-layer neural network can be simulated. In this study, we implement the support vector 

regression model through Python’s Scikit-learn machine learning library.  

Accuracy Evaluation In this study, we enhance the machine learning approaches’ performance by identifying the parameters that affect the 

models’ stability through trial-and-error methods, and determine the optimal parameters for each model through cross validation. Then, BRF, 

XGBoost, and SVM are calibrated and validated with 80% and 20% of the dataset, respectively. The dataset is randomly sampled and divided 

into a training set and a test set. This step is performed 100 times to evaluate the stability of each model.  

determination coefficient (𝑅2) and mean square error (𝑅𝑀𝑆𝐸) are used to evaluate the The 

performance of the model:  

        (10)  

       (11)  

where n is the number of samples, 𝑂𝑖 and 𝑃𝑖 are observed and estimated values, respectively, and 𝑂−and 𝑃−are the mean values of the observed 

and estimated values. Generally, the larger 𝑅2 and the smaller 𝑅𝑀𝑆𝐸, the better the performance of the model is considered. In addition, we 
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performed station retention cross validation for each meteorological station to identify the stability of each model in the estimation of continuous 

time series of drought conditions.  

  

RESULTS  

Model Accuracy Comparison  
This study trained BRF, XGBoost, and SVM models using selected influencing variables and observed SPEI-3 values. Following the 

determination of optimal parameters through cross-validation (as outlined in Table 4), we conducted a comparative analysis of the simulation 

accuracy of these algorithms. The findings indicate that the BRF model outperforms others in simulating SPEI-3 values, closely aligning 

simulated values with observed ones across each site month by month from 2002 to 2020 (refer to Figure 3). In both training and test sets, the 

determination coefficients (𝑅2) for BRF fitting to SPEI-3 are 0.96 and 0.94, with root mean square errors (𝑅𝑀𝑆𝐸) of 0.19 and 0.22, respectively. 

Notably, the bias-corrected approach significantly enhances the accuracy of random forests compared to prior studies, with BRF explaining over 

90% of SPEI variation and exhibiting minimal prediction error. In contrast, SVM and XGBoost models demonstrate similar performance, each 

achieving 𝑅2 values of 0.72 and 0.74, along with 𝑅𝑀𝑆𝐸 values of 0.51 and 0.49, respectively.  

  
Figure 3: Scatterplot of model predictions vs. observations. (a,c,e) is the performance of BRF, SVM, and XGBoost on the training set. (b,d,f) is 

the performance of BRF, SVM, and XGBoost on the test set. “**” represents the significance level of the experiment is greater than 0.99.  

Table 4: The detailed list of parameters with their values used for BRF, XGBoost, and SVM.  

Model  Parameters  

BRF  
RF1: criterion = ‘mse’, n_estimators = 800, max_depth = 5,  

min_samples_leaf=4,max_features=’auto’,random_state=0.bootstrap=true  

XGBo 

ost  

n_estimators=100, learning_rate=0.04, max_depth=5, gamma=0.5,  

consample_bytree=1,consample_bylevel=1,subsample=0.52,booster=’gbtree’,objective=’reg_squarederror’, 

reg_alpha=0.7,reg_lambda=0  

SVM  Kernel=’rbf’,gamma=0.85,C=50,tol=0.01,cache_size=5000,dgree=3,coel0=2.5  

  

MODEL STABILITY EVALUATION  

Randomly selected data sets were divided into calibration datasets and validation datasets. This step is performed 100 times to evaluate the 

stability of each model. The performance evaluation criteria (𝑅2 and 𝑅𝑀𝑆𝐸) of the three models running 100 times are shown in Figure 4. Overall, 

based on these two validation measurements, the performance of the BRF model outperforms XGBoost and SVM, and the performance is 

satisfied. The BRF model explains more than 92% of the SPEI changes, and the estimation error is small (𝑅𝑀𝑆𝐸<0.25). In comparison, the SVM 

and XGBoost models have similar and lower performance. Randomly selected data sets were divided into calibration datasets and validation 

datasets. This step is performed 100 times to evaluate the stability of each model. The performance evaluation criteria (𝑅2 and 𝑅𝑀𝑆𝐸) of the 

three models running 100 times are shown in Figure 4. Overall, based on these two validation measurements, the performance of the BRF model 

outperforms XGBoost and SVM, and the performance is satisfied. The BRF model explains more than 92% of the SPEI changes, and the 

estimation error is small (𝑅𝑀𝑆𝐸<0.25). In comparison, the SVM and XGBoost models have similar and lower performance.  
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Figure 4: Boxplots of model performance measurements ((a). coefficient of determination and (b). root mean squared error) for prediction of 

SPEI.  

To assess the model's stability further, we employed a "leave-one-station-out" cross-validation approach on the chosen 23 meteorological stations. 

Specifically, the meteorological stations in Heze, Huimin, Laiyang, and Yiyuan, situated in the eastern, western, southern, and northern regions 

of Shandong, respectively, were selected for this crossvalidation. As depicted in Figure 5, the BRF model exhibited superior performance in off-

site cross-validation, with the simulated drought conditions at the four stations generally aligning with SPEI-3 calculations based on observed 

data. In contrast, both SVM and XGBoost models performed less effectively than the BRF model, showing significant discrepancies in the 

simulated drought conditions compared to SPEI-3 calculations based on observed data at the four sites.  

  
Figure 5: Comparation among SPEI−3 calculated from observations and forecasted by BRF, XGBoost, and SVM approaches at four stations 

in Shandong province, China.  

Analyzing the Relative Importance of Drought-Influencing Factors Using the BRF Model  

The BRF model can produce a measure of relative importance based on the impact of each predictor on the outcome. Table 5 displays the findings, 

revealing that Pre_3 holds the highest relative importance at 55.17%. Notably, precipitation (Pre_1) accounts for 8.61%, underscoring its pivotal 

role in drought impact. As we employed SPEI on a three-month time scale, SPEI-3 is linked to agricultural drought, emphasizing the heightened 

importance of cumulative precipitation in monitoring this type of drought. Soil moisture (SM) contributes significantly with a relative importance 

of 10.2%, highlighting its role in simulating agricultural drought. Conversely, the relative importance of other influencing factors remains low. 

Generally, the response of vegetation to drought is lagging, and the impact of drought on vegetation tends to occur after a few months, so this 

leads to a low relative importance of the vegetation indices NDVI and EVI.  

Table 5: Relative importance of factors to drought assessment.  

 

Impact Factors  Relative Importance (%)  

One month Timescale precipitation, Pre_1  8.61  

Three month Timescale precipitation, Pre_3  55.17  

Land surface temperature, LST  7.39  

Enhanced vegetation index, EVI  3.54  

Normalized difference vegetation index, NDVI  3.3  

Soil moisture, SM  10.2  

Evaportanspiration, ET  7.3  

Potential evapotranspiration, PET  4.49  
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We analyzed the correlation between SPEI-3 and drought impact factors, which are shown in Figure 6. The correlation analysis indicated that 

significant relationships existed among each factor and SPEI-3, with the highest correlation of 0.762 between PRE_3 and SPEI-3. The correlations 

of SM and PRE_1 with SPEI-3 were 0.55 and 0.449, respectively. The correlation between vegetation index and SPEI-3 was low. These were 

consistent with the results of our analysis of the relative importance of the factors obtained from the BRF model.  

  
Figure 6: Pearson correlation coefficients of SPEI-3 with drought impact factors. The “1” and “3” suffixes following the variable name 

represent the average of one-month and three-month time scales.  

Simulation of Drought by Spatial Distribution of SPEI-3 in Typical Years  

In this research, the study utilized the average SPEI-3 values from 23 meteorological stations spanning the period from 2002 to 2020 to analyze 

the SPEI-3 change process. Figure 7 illustrates that significant and prolonged drought conditions were observed in 2002–2003, 2006–2007, and 

2010–2011. Notably, severe drought occurred during the autumn of 2002 and 2006, winter of 2010, and spring of 2011. From 2012 to 2019, 

drought events were frequent but of low intensity. The years 2003–2004 and 2007–2008 marked wet periods across the entire province. However, 

there were no clear patterns regarding the duration and intensity of drought in other periods. The dashed box in Figure 7 highlights a specific 

period characterized by higher drought intensity and longer duration, selected as representative of typical drought years.  

  
Figure 7: The change of SPEI−3 in Shandong province from 2002 to 2020.  

The accuracy of SPEI-3 spatial distribution for drought monitoring was assessed using both SPEI-3 spatial distribution data and station 

observations of SPEI-3 data. Drought year data from 2002, 2006, and 2011 were specifically chosen for evaluation, and the corresponding results 

are illustrated in Figure 8, Figure 9, and Figure 10. Examining the drought grade distribution depicted in Figure 8 for meteorological stations, it 

is evident that all stations in northwestern Shandong province underwent severe drought in February. In contrast, other stations experienced 

varying degrees of moderate and light drought. March revealed a similar pattern, with most meteorological stations in western Shandong province 

facing severe drought, aligning well with the SPEI drought grade distribution map generated by BRF.  

As the rain belt shifted southwest from April to June, drought conditions alleviated, and meteorological stations across the province were no 

longer experiencing drought. The summer of 2002 saw severe drought in Shandong due to high temperatures and low rainfall, affecting most 

stations except those in the eastern peninsula. This severe drought persisted from August to October, as reflected in the drought class distribution 

map created for this study. Ren and Zhan also monitored drought conditions in Shandong province during February–March and August–October 

2002, highlighting increased severity from August to October. The occurrence of drought during this period in Shandong was linked to the El 

Niño phenomenon and prolonged absence of effective precipitation. In November, the drought dissipated with the subsiding high temperatures 

and the addition of effective precipitation.  
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Figure 8: SPEI-3 spatial distribution simulated by the BRF model and the site’s drought distribution in a drought year (2002)  

  

  
Figure 9: SPEI-3 spatial distribution simulated by the BRF model and the site’s drought distribution in a drought year (2006).  
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Figure 10: SPEI-3 spatial distribution simulated by the BRF model and the site’s drought distribution in a drought year (2011).  

Figure 9 illustrates the drought conditions in Shandong province during different months. In January 2006, most meteorological stations 

experienced light drought, while some stations in the northwest faced moderate drought. In February, the eastern peninsula and southeast coast 

stations showed no drought or light drought, whereas the western part of Shandong had stations experiencing moderate and severe drought. In 

March, drought conditions intensified in the central and northwest regions, with meteorological stations detecting moderate and severe drought. 

April saw relief in the central part due to increased precipitation, but the northwest stations still endured severe drought. The arrival of the rainy 

season in May alleviated the overall drought in Shandong province. November witnessed severe and extreme drought at most stations, with some 

detecting moderate drought.  

Figure 10 shows that in January 2011, all meteorological stations, except for some in the eastern peninsula, experienced severe and extreme 

drought, attributed to low precipitation from December 2010 to January 2011. The drought conditions align with the SPEI drought class 

distribution map. Yao et al. monitored the overall drought periods in Shandong province from February–March and November 2006, and 

December 2010–January 2011. In general, the BRF model's simulated SPEI-3 spatial distribution map accurately monitors drought conditions, 

consistent with historical drought studies' identified periods.  

  

DISCUSSION  
Data-driven models, particularly the BRF model, proved effective in drought monitoring through machine learning with multi-source remote 

sensing factors fitting SPEI. BRF outperformed SVM and XGBoost, showcasing high 𝑅2 and low 𝑅𝑀𝑆𝐸. However, Alizadeh and Nikoo found 

MLP significantly improved SPI prediction in Iran, differing from our results, possibly due to study area, data sources, and model variations. 

Model performance varied across regions, and BRF excelled due to reduced sensitivity to overfitting and handling hierarchical, nonlinear 

relationships between SPEI and remote sensing factors. Bias correction random forest surpassed the original random forest. The BRF model 

revealed precipitation on a three-month scale (GPM-P3) as the most crucial drought factor (55.17%), followed by GPM-P1 (8.61%). This aligns 

with Yang's findings on precipitation's significance in drought. GPM-P3's higher importance stems from SPEI's three-month scale selection, 

indicating its major impact on agricultural drought. Feng supported this, emphasizing the impact of three-month precipitation on agricultural 

drought. Soil moisture (SM) with 10.2% relative importance played a key role in simulating SPEI-3, consistent with Pearson correlation 

coefficients. GPM-P3 had the highest correlation (0.762) with SPEI-3, while SM's correlation was 0.55. SM-GPM-P3 (0.609) exceeded SM-

GPM-P1 (0.526), indicating greater influence of cumulative precipitation on soil moisture. Using the BRF model and remote sensing data, we 

accurately predicted SPEI-3 in unmeasured areas without relying on relative importance as weights for a composite drought index. Constructing 

such an index based on weights often yields varying drought classifications across study areas, deviating from actual ground drought index 

distribution.  

  

CONCLUSION  
In this research, the estimation of SPEI-3 in Shandong, China, employed three machine learning techniques (BRF, SVM, and XGBoost) alongside 

various factors influencing drought. The evaluation of SPEI predicted by the models was based on a monthly dataset derived from surface climate 

data. Notably, the BRF model successfully produced a spatial distribution map of SPEI-3, showcasing its applicability in regions with limited 

observation data and satellite coverage. Recognizing the multifaceted nature of drought, factors such as altitude and vegetation cover type were 

identified as influencers, emphasizing the necessity to incorporate them in future studies for enhanced model precision in drought monitoring. 

Despite the success, the BRF model exhibited limitations, notably a tendency to underestimate drought severity in extreme conditions. 
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Consequently, future research should explore advanced machine learning models and consider additional factors causing drought to enhance the 

models' performance, particularly in assessing extreme drought events.  
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